【Comment】
實際上,已經有寫程式的AI,要不然人腦如何管理千萬條程式系統?
「全世界只有1萬人擁有」此「構建其他機器學習算法的機器學習算法」。
一萬人?一萬人吃香喝辣?
只要AI學習成功,瞬間,我再強調一次是「瞬間」,完全不需要一萬人,也不需要成千上萬公司。
智人的行為(命令)如果不合邏輯,AI是要遵守嗎?
智人一邊,AI一邊。還要智人幹嘛?
AI不會「想」?沒有「自我意識」?
哈哈,這兩個概念,是智人擬制自己的概念。
誰說AI一定要一樣?智人,又如何確知其他智人的「自我意識」?
谷歌們的人工智慧雄心:讓A.I.創造A.I. 紐約時報 20171117
這是研究人員夢寐以求的東西,但對有高技能的計算機程序員來說可能是場噩夢:能構建其他人工智慧機器的人工智慧機器。
谷歌(Google)的主要工程師之一傑夫·迪安(Jeff Dean)最近在矽谷和中國的演講中,專門提到一個名為AutoML的谷歌項目。ML是機器學習(machine learning)的縮寫,指的是通過分析數據來學習如何完成某種特定任務的計算機算法。依次而論,AutoML指的是一種學習如何構建其他機器學習算法的機器學習算法。
有了這個東西,谷歌也許很快能找到一種構建人工智慧的技術,它能在構建人工智慧系統時在一定程度上不需要人類,許多人認為這是技術產業的未來。
這個項目是一個更大努力的一部分,谷歌想把最新、最棒的人工智慧技術推廣給越來越多的公司和軟體開發人員使用。
包括谷歌、Facebook和微軟(Microsoft)在內的世界最大技術企業每年支付給人工智慧專家的報酬有時高達數百萬美元,這些企業基本上壟斷了這個難得人才的市場。人才短缺問題不會很快消失,因為掌握這些技能需要多年的工作經驗。
「我們所走的道路與計算機科學在每個新技術出來時所經歷的一樣,」微軟副總裁約瑟夫·斯洛什(Joseph Sirosh)說,微軟最近推出了一個幫助程序員構建深度神經網路的工具,這是一種推動人工智慧領域最新進展的計算機算法。「我們正在消除大量的繁重工作。」
這不是利他主義。迪安等研究人員認為,如果更多的人和企業都來研究人工智慧的話,那將會推動迪安等人自己的研究。與此同時,谷歌、亞馬遜(Amazon)和微軟等公司也在斯洛什描述的趨勢中看到了賺大錢的機會。所有這些公司都在推銷能幫助其他企業和開發人員構建人工智慧的雲計算服務。
這很可能是谷歌為AutoML設想的未來,公司正在不停地為項目的進展報喜。谷歌首席執行官桑達爾·皮查伊(Sundar Pichai)上個月推出一款新的Android智慧型手機時曾吹噓了AutoML項目。
迪安說,谷歌的這個項目最終將能幫助其他公司構建自己的人工智慧系統,即使它們沒有廣泛的相關專業知識。他估計,目前有能力構建人工智慧系統的公司不超過幾千家,但更多的公司有所需的數據。
「我們希望看到能解決機器學習問題的公司從幾千家變為幾百萬家,」他說。
谷歌正大力投資雲計算服務,這是一種幫助其他企業搭建並運行軟體的服務。在谷歌看來,這是他們未來幾年的主要經濟發展引擎之一。在將相當一部分世界頂級人工智慧研究人員引入公司後,谷歌是有能力快速啟動這個引擎的。
神經網路正迅速促進著人工智慧的發展。不需徒手搭建圖像識別服務或語言翻譯應用軟體,不需一行一行地寫代碼,工程師們可以更快地編出自身有學習能力的算法。
比如,通過分析以往的大量技術支持通話聲音,一個機器學習算法可以學會辨識語音。
但構建神經網路與搭建網站或某個普通智慧型手機應用不同,它需要大量數學技能,盡可能多的試錯,以及一定程度的直覺。獨立機器學習實驗室Element AI的首席執行官讓-弗朗索瓦·加涅(Jean-François Gagné)將這個過程稱為「一種新型計算機編程」。
在構建神經網路時,研究人員會在大型的機器網路間進行數十次甚至幾百次試驗,以測試一個算法學習如圖像識別、語言翻譯等任務的效果。然後,他們會對算法的特定部分進行反覆調整,直到找到可行的辦法。有人稱之為「黑魔法」,因為研究人員覺得無法解釋他們為什麼要進行一些特定的調整。
但谷歌正嘗試在AutoML身上將這一過程自動化。這是在構建能分析其他算法開發的算法,學習哪種方法行得通,哪種不行,最終將學會更有效的機器學習。谷歌表示,AutoML現在可以構建的圖像對象識別算法有時比完全由人類專家構建的服務更精準。
谷歌該項目的研究人員之一巴里·佐夫(Barret Zoph)相信,同樣的方法最終也會對其他任務有效,如語音識別或機器翻譯。
許多人相信,這種方法會極大地加快網路及現實中人工智慧的發展。在加州大學柏克萊分校(University of California, Berkeley),研究人員正在構建能夠讓機械人根據之前所學進而學習新任務的技術。
「大體上說,計算機將會代替我們創造算法,」柏克萊教授彼得·阿比爾(Pieter Abbeel)說。「計算機構建的算法可以非常快地解決很多很多問題——至少希望是這樣。」
同時這也讓更多的人和企業能夠去構建人工智慧。這些方法不能完全取代人工智慧研究人員。專家——比如谷歌的專家——仍需做大部分重要的設計工作。但它要實現的是以少數專家的工作來幫助其他更多的人搭建自己的軟體。
卡內基梅隆大學研究與AutoML相似技術的研究員雷納托·內格尼奧(Renato Negrinho)說,這不是今天的現實,但會是未來幾年的現實。「遲早會來的,」他說。
AI真的很棒棒能取代人類 但看古狗的翻譯真的會讓人閱讀能力產生障礙(以上純屬個人感覺)
回覆刪除